EQA

۲

KEY FORMULAS Lind, Marchal, and W	athen •	<i>Statistical Techniques in Business & Econo</i> 17th edition
CHAPTER 3 Population mean 		CHAPTER 5Special rule of addition
$\mu = \frac{\Sigma x}{M}$	[3–1]	P(A or B) = P(A) + P(B)
Sample mean, raw data		Complement rule
$\overline{x} = \frac{\Sigma x}{1}$	[3-2]	P(A) = 1 - P(-A)
 Weighted mean 		P(A or B) = P(A) + P(B) - P(A and B)
$w_1x_1 + w_2x_2 + \cdots + w_nx_n$		Special rule of multiplication
$x_w = \frac{w_1 + w_2 + \cdots + w_n}{w_1 + w_2 + \cdots + w_n}$	[3–3]	P(A and B) = P(A)P(B)
Geometric mean		General rule of multiplication
$GM = \sqrt[n]{(x_1)(x_2)(x_3)\dots(x_n)}$	[3–4]	P(A and B) = P(A)P(B A)
Geometric mean rate of increase		Bayes' Theorem
$GM = \sqrt[n]{\frac{\text{Value at end of period}}{\text{Value at start of period}}} - 1.0$	[3–5]	$P(A_1 B) = \frac{P(A_1)P(B A_1)}{P(A_1)P(B A_1) + P(A_1)P(B A_1)}$
• Range		 P(A₁)P(B A₁) + P(A₂)P(B A₂) Multiplication formula
Range = Maximum value – Minimum value	[3–6]	Total arrangements = $(m)(n)$
Population variance		Number of permutations
$\sigma^2 = \frac{\Sigma (x - \mu)^2}{N}$	[3–7]	$_{n}P_{r} = \frac{n!}{(n-r)!}$
Population standard deviation		Number of combinations
$\sigma = \sqrt{\frac{\Sigma(x-\mu)^2}{N}}$	[3–8]	$_{n}C_{r} = \frac{n!}{r!(n-r)!}$
Sample variance		
$s^2 = \frac{\Sigma(x - \bar{x})^2}{n - 1}$	[3–9]	CHAPTER 6Mean of a probability distribution
Sample standard deviation		$\mu = \Sigma[x P(x)]$
$s = \sqrt{\frac{\Sigma(x - \overline{x})^2}{z}}$	[3–10]	Variance of a probability distribution
 Sample mean, grouped data 		$\sigma^2 = \Sigma[(x - \mu)^2 P(x)]$
ΣfM		Binomial probability distribution
$\overline{x} = \frac{2\pi m}{n}$	[3–11]	$P(x) = {}_{n}C_{x}\pi^{x}(1-\pi)^{n-x}$
Sample standard deviation, grouped data		Mean of a binomial distribution
$s = \sqrt{\frac{\sum f(M - \overline{x})^2}{2}}$	[3_12]	$\mu = n\pi$
<i>3 −</i> V <i>n</i> − 1	[3-12]	

۲

- **CHAPTER 4**
- Location of a percentile

$$L_p = (n+1) \frac{P}{100}$$

• Pearson's coefficient of skewness

$$sk = \frac{3(\overline{x} - \text{Median})}{sk}$$

$$sk = \frac{S(x - Medial)}{s}$$
 [4-2]

Software coefficient of skewness

$$sk = \frac{n}{(n-1)(n-2)} \left[\sum \left(\frac{x-\overline{x}}{s} \right)^3 \right]$$
 [4-3]

omics,

•	Special rule of addition	
	P(A or B) = P(A) + P(B)	[5–2]
•	Complement rule	
	$P(A) = 1 - P(\sim A)$	[5–3]
•	General rule of addition	
	P(A or B) = P(A) + P(B) - P(A and B)	[5–4]
•	Special rule of multiplication	
	P(A and B) = P(A)P(B)	[5–5]
•	General rule of multiplication	
	P(A and B) = P(A)P(B A)	[5–6]
•	Bayes' Theorem	
	$P(A_1 B) = \frac{P(A_1)P(B A_1)}{P(A_1)P(B A_1) + P(A_2)P(B A_2)}$	[5–7]
•	Multiplication formula	
	Total arrangements = $(m)(n)$	[5–8]
•	Number of permutations	
	${}_{n}P_{r}=\frac{n!}{(n-r)!}$	[5–9]
•	Number of combinations	
	${}_{n}C_{r}=\frac{n!}{r!(n-r)!}$	[5–10]

 Mean of a probability distribution 		
$\mu = \Sigma[x P(x)]$	[6–1]	
Variance of a probability distribution		
$\sigma^2 = \Sigma[(x - \mu)^2 P(x)]$	[6–2]	
Binomial probability distribution		
$P(x) = {}_{n}C_{x}\pi^{x}(1-\pi)^{n-x}$	[6–3]	
Mean of a binomial distribution		

$$\mu = n\pi$$
 [6-4]

$$\sigma^2 = n\pi(1 - \pi)$$
 [6–5]

• Hypergeometric probability distribution

$$P(x) = \frac{({}_{S}C_{x})({}_{N-S}C_{n-x})}{{}_{N}C_{n}}$$
[6-6]

$$P(x) = \frac{\mu^{x} e^{-\mu}}{x!}$$
 [6-7]

Poisson distribution
$$\mu = n\pi \qquad \qquad [6-8]$$

۲

•

• Mean of a

[4–1]

۲

۲

CHAPTER 7

Mean of a uniform distribution

$$\mu = \frac{a+b}{2}$$

Standard deviation of a uniform distribution

σ

$$=\sqrt{\frac{(b-a)^2}{12}}$$
 [7-2]

• Uniform probability distribution

$$P(x) = \frac{1}{b-a}$$
 [7-3]
if $a \le x \le b$ and 0 elsewhere

Normal probability distribution

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\left[\frac{(x-\mu)^2}{2\sigma^2}\right]}$$
[7-4]

Standard normal value

CHAPTER 8

CHAPTER 9

Standard error of mean

+ z-value, μ and σ known

۲

$$z = \frac{x - \mu}{\sigma}$$

$$P(x) = \lambda e^{-\lambda x}$$
 [7–6]

Finding a probability using the exponential distribution

 $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$

 $z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$

 $\overline{x} \pm z \frac{\sigma}{\sqrt{n}}$

 $p = \frac{x}{n}$

 $n = \left(\frac{z\sigma}{E}\right)^2$

 $P(\text{Arrival time} < x) = 1 - e^{-\lambda x}$ [7–7]

$$n = \pi (1 - \pi) \left(\frac{z}{E}\right)^2$$
 [9-6]

CHAPTER 10

۲

[7–1]

[7–5]

[8–1]

[8–2]

[9–1]

[9–2]

[9–3]

[9–4]

[9–5]

۲

- Testing a mean, σ known

$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$
 [10–1]

- Testing a mean, $\boldsymbol{\sigma}$ unknown

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$
 [10-2]

$$z = \frac{\overline{x}_c - \mu_1}{\sigma / \sqrt{n}}$$
[10–3]

CHAPTER 11

• Type II error

Variance of the distribution of difference in means

$$\sigma_{\bar{x}_1 - \bar{x}_2}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$
 [11-1]

- Two-sample test of means, known $\boldsymbol{\sigma}$

$$z = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1 + n_2}}}$$
[11-2]

Pooled variance

$$s_{p}^{2} = \frac{(n_{1} - 1) s_{1}^{2} + (n_{2} - 1) s_{2}^{2}}{n_{1} + n_{2} - 2}$$
[11-3]

- Two-sample test of means, unknown but equal σ^2 s

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s_\rho^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$
[11-4]

+ Two-sample tests of means, unknown and unequal $\sigma^2 s$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$
[11-5]

Degrees of freedom for unequal variance test

$$df = \frac{\left[(s_1^2/n_1) + (s_2^2/n_2) \right]^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$$
[11-6]

• Paired t test

$$t = \frac{\overline{d}}{s_d / \sqrt{n}}$$
 [11–7]

CHAPTER 12

Test for comparing two variances

$$F = \frac{s_1^2}{s_2^2}$$
 [12–1]
• Sum of squares, total

SS total =
$$\Sigma (x - \bar{x}_G)^2$$
 [12–2]

• Confidence interval for
$$\mu$$
, σ unknown
 $\overline{x} \pm t \frac{s}{\sqrt{n}}$

Sample proportion

Confidence interval for proportion

- Confidence interval for $\mu,$ with σ known

$$p \pm z \sqrt{\frac{p(1-p)}{n}}$$

Sample size for estimating mean

• Pa

[14–1]

EQA

۲

• Sum of squares, treatments

$$SST = SS \text{ total} - SSE \qquad [12-4]$$
• Confidence interval for differences in treatment means

$$(\bar{x}_1 - \bar{x}_2) \pm t \sqrt{\mathsf{MSE}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \qquad [12-5]$$

 $SSE = \Sigma (x - \overline{x}_c)^2$

• Sum of squares, blocks

• Sum of squares, error

$$SSB = k\Sigma (\overline{x}_b - \overline{x}_G)^2$$
 [12–6]

CHAPTER 13

• Correlation coefficient

$$r = \frac{\Sigma(x - \bar{x})(y - \bar{y})}{(n - 1) s_x s_y}$$

 $\sqrt{1-r^2}$

- $t = \frac{r\sqrt{n-2}}{r}$
- Linear regression equation

 $\hat{y} = a + bx$ • Slope of the regression line

$$b = r \frac{s_y}{s_y}$$
 [13-4]

· Intercept of the regression line

$$a = \overline{y} - b\overline{x}$$
 [13–5]

Test for a zero slope

۲

$$t = \frac{b - 0}{s_b}$$

 $\sum (y - \hat{y})^2$

• Standard error of estimate

$$s_{y \cdot x} = \sqrt{n-2}$$

$$r^{2} = \frac{\text{SSR}}{\text{SS Total}} = 1 - \frac{\text{SSE}}{\text{SS Total}}$$
[13–8]

• Standard error of estimate

Coefficient of determination

$$s_{y \cdot x} = \sqrt{\frac{\text{SSE}}{n-2}}$$
[13–9]

Confidence interval

$$\hat{y} \pm ts_{y \cdot x} \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{\Sigma(x - \bar{x})^2}}$$
 [13-10]

Prediction interval

$$\hat{y} \pm ts_{y \cdot x} \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{\Sigma (x - \bar{x})^2}}$$
 [13–11]

۲

[12–3]

[13–1]

[13–2]

[13–3]

[13–6]

[13–7]

$$\hat{y} = a + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

 • Multiple standard error of estimate

$$S_{y \cdot 123...k} = \sqrt{\frac{\Sigma(y - \hat{y})^2}{n - (k + 1)}} = \sqrt{\frac{SSE}{n - (k + 1)}}$$
 [14–2]

Coefficient of multiple determination

$$R^2 = \frac{\text{SSR}}{\text{SS total}}$$
 [14–3]

Adjusted coefficient of determination

$$R_{adj}^{2} = 1 - \frac{\frac{\text{SSE}}{n - (k + 1)}}{\frac{\text{SS total}}{n - 1}}$$
[14-4]

Global test of hypothesis

• Variance inflation factor

$$F = \frac{\text{SSR}/k}{\text{SSE}/[n - (k + 1)]}$$
[14–5]

Testing for a particular regression coefficient

$$t = \frac{b_i - 0}{s_{b_i}}$$
 [14–6]

$$VIF = \frac{1}{1 - R_i^2}$$
 [14-7]

CHAPTER 15

Test of hypothesis, one proportion

$$z = \frac{\rho - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}}$$
[15–1]

• Two-sample test of proportions

$$z = \frac{\rho_1 - \rho_2}{\sqrt{\frac{\rho_c(1 - \rho_c)}{n_1} + \frac{\rho_c(1 - \rho_c)}{n_2}}}$$
[15-2]

Pooled proportion

$$p_c = \frac{x_1 + x_2}{n_1 + n_2}$$
 [15-3]

Chi-square test statistic

$$\chi^2 = \sum \left[\frac{(f_o - f_e)^2}{f_e} \right] \eqno(15-4)$$
 . Expected frequency

$$f_e = \frac{(\text{Row total})(\text{Column total})}{\text{Grand total}}$$
 [15–5]

CHAPTER 16 • Sign test, *n* > 10

$$z = \frac{(x \pm .50) - \mu}{\sigma}$$
 [16–1]

۲

۲

• Wilcoxon rank-sum test

$$z = \frac{W - \frac{n_1(n_1 + n_2 + 1)}{2}}{\sqrt{\frac{n_1 n_2(n_1 + n_2 + 1)}{12}}}$$
[16-4]

• Kruskal-Wallis test

$$H = \frac{12}{n(n+1)} \left[\frac{(\Sigma R_1)^2}{n_1} + \frac{(\Sigma R_2)^2}{n_2} + \dots + \frac{(\Sigma R_k)^2}{n_k} \right] - 3(n+1)$$
[16–5]

Spearman coefficient of rank correlation

$$r_{\rm s} = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}$$
 [16-6]

Hypothesis test, rank correlation

$$t = r_s \sqrt{\frac{n-2}{1-r_s^2}}$$
 [16–7]

CHAPTER 17

• Simple index

۲

$$=rac{p_t}{p_0}$$
 (100) [17–1]

[17–2]

Simple average of price relatives

Р

$$P = \frac{\Sigma P_i}{n}$$

Simple aggregate index

$$P = \frac{\Sigma \rho_t}{\Sigma \rho_0}$$
(100) [17–3]

Laspeyres' price index

$$P = \frac{\Sigma \rho_{\rm f} q_0}{\Sigma \rho_0 q_0} \,(100)$$
 [17-4]

Paasche's price index

$$=\frac{\Sigma \rho_t q_t}{\Sigma \rho_0 q_t}$$
(100) [17–5]

Fisher's ideal index

Р

 $\sqrt{(Laspeyres' price index)(Paasche's price index)} \quad \ \ [17-6]$ • Value index

$$V = \frac{\Sigma \rho_t q_t}{\Sigma \rho_0 q_0} (100)$$
 [17-7]

Real income

Real income =
$$\frac{\text{Money income}}{\text{CPI}}$$
 (100) [17–8]

• Using an index as a deflator

Deflated sales =
$$\frac{\text{Actual sales}}{\text{Index}}$$
 (100) [17–9]

• Purchasing power

۲

I	Purchasing power = $\frac{\$1}{CPI}$ (100)	[17–10]
• Linear trend		
	$\hat{y} = a + bt$	[18–1]
Log trend equat	ion	
	$\log \hat{y} = \log a + \log b(t)$	[18–2]

Correction factor for adjusting quarterly means

$$Correction factor = \frac{4.00}{\text{Total of four means}}$$
[18–3]

• Durbin-Watson statistic

$$d = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} e_t^2}$$
 [18-4]

CHAPTER 19

٠	Grand mean	
	$\overline{\overline{x}} = \frac{\Sigma \overline{x}}{k}$	[19–1]
•	Control limits, mean	
	$UCL = \overline{\overline{x}} + A_2 \overline{R} \qquad LCL = \overline{\overline{x}} - A_2 \overline{R}$	[19–4]
•	Control limits, range	
	$UCL = D_4 \overline{R}$ $LCL = D_3 \overline{R}$	[19–5]
•	Mean proportion defective	
	$p = \frac{\text{Total number defective}}{\text{Total number of items sampled}}$	[19–6]
•	Control limits, proportion	
	UCL and LCL = $p \pm 3\sqrt{\frac{p(1-p)}{n}}$	[19–8]
•	Control limits, c-bar chart	
	UCL and LCL = $\overline{c} \pm 3\sqrt{\overline{c}}$	[19–9]
с	CHAPTER 20 Expected monetary value	
	$EMV(A) = \Sigma[\mathcal{P}(S), \mathcal{V}(A, S)]$	[20_1]
	Expected apportunity loss	[20-1]
•	Expected opportunity loss	

$\mathsf{EOL}(A_i) = \Sigma[P(S_j) \cdot R(A_i, S_j)] \eqno(20-2)$ • Expected value of perfect information

EVPI = Expected value under conditions of certainty - Expected value of optimal decision under conditions of uncertainty [20–3]