KEY FORMULAS
Lind, Marchal, and Wathen

Statistical Techniques in Business \& Economics, 17th edition

CHAPTER 3

- Population mean

$$
\begin{equation*}
\mu=\frac{\Sigma x}{N} \tag{3-1}
\end{equation*}
$$

- Sample mean, raw data

$$
\begin{equation*}
\bar{x}=\frac{\Sigma x}{n} \tag{3-2}
\end{equation*}
$$

- Weighted mean

$$
\begin{equation*}
\bar{x}_{w}=\frac{w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}}{w_{1}+w_{2}+\cdots+w_{n}} \tag{3-3}
\end{equation*}
$$

- Geometric mean

$$
\begin{equation*}
G M=\sqrt[n]{\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}\right) \ldots\left(x_{n}\right)} \tag{3-4}
\end{equation*}
$$

- Geometric mean rate of increase

$$
\begin{equation*}
G M=\sqrt[n]{\frac{\text { Value at end of period }}{\text { Value at start of period }}}-1.0 \tag{3-5}
\end{equation*}
$$

- Range

$$
\begin{equation*}
\text { Range }=\text { Maximum value }- \text { Minimum value } \tag{3-6}
\end{equation*}
$$

- Population variance

$$
\begin{equation*}
\sigma^{2}=\frac{\Sigma(x-\mu)^{2}}{N} \tag{3-7}
\end{equation*}
$$

- Population standard deviation

$$
\begin{equation*}
\sigma=\sqrt{\frac{\Sigma(x-\mu)^{2}}{N}} \tag{3-8}
\end{equation*}
$$

- Sample variance

$$
\begin{equation*}
s^{2}=\frac{\Sigma(x-\bar{x})^{2}}{n-1} \tag{3-9}
\end{equation*}
$$

- Sample standard deviation

$$
s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}
$$

- Sample mean, grouped data

$$
\begin{equation*}
\bar{x}=\frac{\Sigma f M}{n} \tag{3-11}
\end{equation*}
$$

- Sample standard deviation, grouped data

$$
\begin{equation*}
s=\sqrt{\frac{\Sigma f(M-\bar{x})^{2}}{n-1}} \tag{3-12}
\end{equation*}
$$

CHAPTER 4

- Location of a percentile

$$
\begin{equation*}
L_{p}=(n+1) \frac{P}{100} \tag{4-1}
\end{equation*}
$$

- Pearson's coefficient of skewness

$$
\begin{equation*}
s k=\frac{3(\bar{x}-\text { Median })}{s} \tag{4-2}
\end{equation*}
$$

- Software coefficient of skewness

$$
s k=\frac{n}{(n-1)(n-2)}\left[\sum\left(\frac{x-\bar{x}}{s}\right)^{3}\right]
$$

CHAPTER 5

- Special rule of addition

$$
\begin{equation*}
P(A \text { or } B)=P(A)+P(B) \tag{5-2}
\end{equation*}
$$

- Complement rule

$$
\begin{equation*}
P(A)=1-P(\sim A) \tag{5-3}
\end{equation*}
$$

- General rule of addition

$$
\begin{equation*}
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B) \tag{5-4}
\end{equation*}
$$

- Special rule of multiplication

$$
\begin{equation*}
P(A \text { and } B)=P(A) P(B) \tag{5-5}
\end{equation*}
$$

- General rule of multiplication

$$
P(A \text { and } B)=P(A) P(B \mid A)
$$

[5-6]

- Bayes' Theorem

$$
\begin{equation*}
P\left(A_{1} \mid B\right)=\frac{P\left(A_{1}\right) P\left(B \mid A_{1}\right)}{P\left(A_{1}\right) P\left(B \mid A_{1}\right)+P\left(A_{2}\right) P\left(B \mid A_{2}\right)} \tag{5-7}
\end{equation*}
$$

- Multiplication formula

$$
\begin{equation*}
\text { Total arrangements }=(m)(n) \tag{5-8}
\end{equation*}
$$

- Number of permutations

$$
\begin{equation*}
{ }_{n} P_{r}=\frac{n!}{(n-r)!} \tag{5-9}
\end{equation*}
$$

- Number of combinations

$$
\begin{equation*}
{ }_{n} C_{r}=\frac{n!}{r!(n-r)!} \tag{5-10}
\end{equation*}
$$

CHAPTER 6

- Mean of a probability distribution

$$
\begin{equation*}
\mu=\Sigma[x P(x)] \tag{6-1}
\end{equation*}
$$

- Variance of a probability distribution

$$
\begin{equation*}
\sigma^{2}=\Sigma\left[(x-\mu)^{2} P(x)\right] \tag{6-2}
\end{equation*}
$$

- Binomial probability distribution

$$
\begin{equation*}
P(x)={ }_{n} C_{x} \pi^{x}(1-\pi)^{n-x} \tag{6-3}
\end{equation*}
$$

- Mean of a binomial distribution

$$
\mu=n \pi
$$

- Variance of a binomial distribution

$$
\begin{equation*}
\sigma^{2}=n \pi(1-\pi) \tag{6-5}
\end{equation*}
$$

- Hypergeometric probability distribution

$$
\begin{equation*}
P(x)=\frac{\left({ }_{s} C_{\chi}\right)\left({ }_{N-S} C_{n-x}\right)}{{ }_{N} C_{n}} \tag{6-6}
\end{equation*}
$$

- Poisson probability distribution

$$
\begin{equation*}
P(x)=\frac{\mu^{x} e^{-\mu}}{x!} \tag{6-7}
\end{equation*}
$$

- Mean of a Poisson distribution

$$
\begin{equation*}
\mu=n \pi \tag{6-8}
\end{equation*}
$$

CHAPTER 7

- Mean of a uniform distribution

$$
\begin{equation*}
\mu=\frac{a+b}{2} \tag{7-1}
\end{equation*}
$$

- Standard deviation of a uniform distribution

$$
\begin{equation*}
\sigma=\sqrt{\frac{(b-a)^{2}}{12}} \tag{7-2}
\end{equation*}
$$

- Uniform probability distribution

$$
\begin{gather*}
P(x)=\frac{1}{b-a} \tag{7-3}\\
\text { if } a \leq x \leq b \quad \text { and } 0 \text { elsewhere }
\end{gather*}
$$

- Normal probability distribution

$$
\begin{equation*}
P(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\left[\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]} \tag{7-4}
\end{equation*}
$$

- Standard normal value

$$
\begin{equation*}
z=\frac{x-\mu}{\sigma} \tag{7-5}
\end{equation*}
$$

- Exponential distribution

$$
\begin{equation*}
P(x)=\lambda e^{-\lambda x} \tag{7-6}
\end{equation*}
$$

- Finding a probability using the exponential distribution

$$
\begin{equation*}
P(\text { Arrival time }<x)=1-\mathrm{e}^{-\lambda x} \tag{7-7}
\end{equation*}
$$

CHAPTER 8

- Standard error of mean

$$
\begin{equation*}
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \tag{8-1}
\end{equation*}
$$

- z-value, μ and σ known

$$
\begin{equation*}
z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \tag{8-2}
\end{equation*}
$$

CHAPTER 9

- Confidence interval for μ, with σ known

$$
\begin{equation*}
\bar{x} \pm z \frac{\sigma}{\sqrt{n}} \tag{9-1}
\end{equation*}
$$

- Confidence interval for μ, σ unknown

$$
\begin{equation*}
\bar{x} \pm t \frac{s}{\sqrt{n}} \tag{9-2}
\end{equation*}
$$

- Sample proportion

$$
\begin{equation*}
p=\frac{x}{n} \tag{9-3}
\end{equation*}
$$

- Confidence interval for proportion

$$
\begin{equation*}
p \pm z \sqrt{\frac{p(1-p)}{n}} \tag{9-4}
\end{equation*}
$$

- Sample size for estimating mean

$$
n=\left(\frac{z \sigma}{E}\right)^{2}
$$

- Sample size for a proportion

$$
\begin{equation*}
n=\pi(1-\pi)\left(\frac{z}{E}\right)^{2} \tag{9-6}
\end{equation*}
$$

CHAPTER 10

- Testing a mean, σ known

$$
\begin{equation*}
z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \tag{10-1}
\end{equation*}
$$

- Testing a mean, σ unknown

$$
\begin{equation*}
t=\frac{\bar{x}-\mu}{s / \sqrt{n}} \tag{10-2}
\end{equation*}
$$

- Type II error

$$
\begin{equation*}
z=\frac{\bar{x}_{c}-\mu_{1}}{\sigma / \sqrt{n}} \tag{10-3}
\end{equation*}
$$

CHAPTER 11

- Variance of the distribution of difference in means

$$
\begin{equation*}
\sigma_{x_{1}-\bar{x}_{2}}^{2}=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}} \tag{11-1}
\end{equation*}
$$

- Two-sample test of means, known σ

$$
\begin{equation*}
z=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \tag{11-2}
\end{equation*}
$$

- Pooled variance

$$
\begin{equation*}
s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2} \tag{11-3}
\end{equation*}
$$

- Two-sample test of means, unknown but equal $\sigma^{2} s$

$$
\begin{equation*}
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \tag{11-4}
\end{equation*}
$$

- Two-sample tests of means, unknown and unequal $\sigma^{2} s$

$$
\begin{equation*}
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} \tag{11-5}
\end{equation*}
$$

- Degrees of freedom for unequal variance test

$$
\begin{equation*}
d f=\frac{\left[\left(s_{1}^{2} / n_{1}\right)+\left(s_{2}^{2} / n_{2}\right)\right]^{2}}{\frac{\left(s_{1}^{2} / n_{1}\right)^{2}}{n_{1}-1}+\frac{\left(s_{2}^{2} / n_{2}\right)^{2}}{n_{2}-1}} \tag{11-6}
\end{equation*}
$$

- Paired t test

$$
\begin{equation*}
t=\frac{\bar{d}}{s_{d} / \sqrt{n}} \tag{11-7}
\end{equation*}
$$

CHAPTER 12

- Test for comparing two variances

$$
\begin{equation*}
F=\frac{s_{1}^{2}}{s_{2}^{2}} \tag{12-1}
\end{equation*}
$$

- Sum of squares, total

$$
\begin{equation*}
\text { SS total }=\Sigma\left(x-\bar{x}_{G}\right)^{2} \tag{12-2}
\end{equation*}
$$

- Sum of squares, error

$$
\begin{equation*}
\mathrm{SSE}=\Sigma\left(x-\bar{x}_{c}\right)^{2} \tag{12-3}
\end{equation*}
$$

- Sum of squares, treatments
SST = SS total - SSE
- Confidence interval for differences in treatment means

$$
\begin{equation*}
\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t \sqrt{\operatorname{MSE}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \tag{12-5}
\end{equation*}
$$

- Sum of squares, blocks

$$
\begin{equation*}
\mathrm{SSB}=k \Sigma\left(\bar{x}_{b}-\bar{x}_{G}\right)^{2} \tag{12-6}
\end{equation*}
$$

- Sum of squares error, two-way ANOVA
SSE = SS total - SST - SSB

CHAPTER 13

- Correlation coefficient

$$
\begin{equation*}
r=\frac{\Sigma(x-\bar{x})(y-\bar{y})}{(n-1) s_{x} s_{y}} \tag{13-1}
\end{equation*}
$$

- Test for significant correlation

$$
\begin{equation*}
t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}} \tag{13-2}
\end{equation*}
$$

- Linear regression equation

$$
\begin{equation*}
\hat{y}=a+b x \tag{13-3}
\end{equation*}
$$

- Slope of the regression line

$$
\begin{equation*}
b=r \frac{s_{y}}{s_{x}} \tag{13-4}
\end{equation*}
$$

- Intercept of the regression line

$$
\begin{equation*}
a=\bar{y}-b \bar{x} \tag{13-5}
\end{equation*}
$$

- Test for a zero slope

$$
\begin{equation*}
t=\frac{b-0}{s_{b}} \tag{13-6}
\end{equation*}
$$

- Standard error of estimate

$$
\begin{equation*}
s_{y \cdot x}=\sqrt{\frac{\Sigma(y-\hat{y})^{2}}{n-2}} \tag{13-7}
\end{equation*}
$$

- Coefficient of determination

$$
r^{2}=\frac{\text { SSR }}{\text { SS Total }}=1-\frac{\text { SSE }}{\text { SS Total }}
$$

- Standard error of estimate

$$
\begin{equation*}
s_{y \cdot x}=\sqrt{\frac{\mathrm{SSE}}{n-2}} \tag{13-9}
\end{equation*}
$$

- Confidence interval

$$
\begin{equation*}
\hat{y} \pm t s_{y \cdot x} \sqrt{\frac{1}{n}+\frac{(x-\bar{x})^{2}}{\Sigma(x-\bar{x})^{2}}} \tag{13-10}
\end{equation*}
$$

- Prediction interval

$$
\hat{y} \pm t s_{y \cdot x} \sqrt{1+\frac{1}{n}+\frac{(x-\bar{x})^{2}}{\Sigma(x-\bar{x})^{2}}}
$$

CHAPTER 14

- Multiple regression equation

$$
\begin{equation*}
\hat{y}=a+b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{k} x_{k} \tag{14-1}
\end{equation*}
$$

- Multiple standard error of estimate

$$
\begin{equation*}
s_{y \cdot 123 \ldots k}=\sqrt{\frac{\sum(y-\hat{y})^{2}}{n-(k+1)}}=\sqrt{\frac{\mathrm{SSE}}{n-(k+1)}} \tag{14-2}
\end{equation*}
$$

- Coefficient of multiple determination

$$
\begin{equation*}
R^{2}=\frac{\mathrm{SSR}}{\mathrm{SS} \text { total }} \tag{14-3}
\end{equation*}
$$

- Adjusted coefficient of determination

$$
\begin{equation*}
R_{a d j}^{2}=1-\frac{\frac{\mathrm{SSE}}{n-(k+1)}}{\frac{\mathrm{SS} \text { total }}{n-1}} \tag{14-4}
\end{equation*}
$$

- Global test of hypothesis

$$
\begin{equation*}
F=\frac{\mathrm{SSR} / k}{\mathrm{SSE} /[n-(k+1)]} \tag{14-5}
\end{equation*}
$$

- Testing for a particular regression coefficient

$$
\begin{equation*}
t=\frac{b_{i}-0}{s_{b_{i}}} \tag{14-6}
\end{equation*}
$$

- Variance inflation factor

$$
\begin{equation*}
V I F=\frac{1}{1-R_{j}^{2}} \tag{14-7}
\end{equation*}
$$

CHAPTER 15

- Test of hypothesis, one proportion

$$
\begin{equation*}
z=\frac{p-\pi}{\sqrt{\frac{\pi(1-\pi)}{n}}} \tag{15-1}
\end{equation*}
$$

- Two-sample test of proportions

$$
\begin{equation*}
z=\frac{p_{1}-p_{2}}{\sqrt{\frac{p_{c}\left(1-p_{c}\right)}{n_{1}}+\frac{p_{c}\left(1-p_{c}\right)}{n_{2}}}} \tag{15-2}
\end{equation*}
$$

- Pooled proportion

$$
\begin{equation*}
p_{c}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}} \tag{15-3}
\end{equation*}
$$

- Chi-square test statistic

$$
\begin{equation*}
\chi^{2}=\sum\left[\frac{\left(f_{\mathrm{o}}-f_{\mathrm{e}}\right)^{2}}{f_{e}}\right] \tag{15-4}
\end{equation*}
$$

- Expected frequency

$$
f_{\mathrm{e}}=\frac{(\text { Row total })(\text { Column total })}{\text { Grand total }}
$$

[15-5]

CHAPTER 16

- Sign test, $n>10$

$$
\begin{equation*}
z=\frac{(x \pm .50)-\mu}{\sigma} \tag{16-1}
\end{equation*}
$$

- Wilcoxon rank-sum test

$$
\begin{equation*}
z=\frac{w-\frac{n_{1}\left(n_{1}+n_{2}+1\right)}{2}}{\sqrt{\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}}} \tag{16-4}
\end{equation*}
$$

- Kruskal-Wallis test

$$
\begin{align*}
H= & \frac{12}{n(n+1)}\left[\frac{\left(\Sigma R_{1}\right)^{2}}{n_{1}}+\frac{\left(\Sigma R_{2}\right)^{2}}{n_{2}}+\cdots+\frac{\left(\Sigma R_{k}\right)^{2}}{n_{k}}\right] \\
& -3(n+1) \tag{16-5}
\end{align*}
$$

- Spearman coefficient of rank correlation

$$
\begin{equation*}
r_{s}=1-\frac{6 \Sigma d^{2}}{n\left(n^{2}-1\right)} \tag{16-6}
\end{equation*}
$$

- Hypothesis test, rank correlation

$$
\begin{equation*}
t=r_{s} \sqrt{\frac{n-2}{1-r_{s}^{2}}} \tag{16-7}
\end{equation*}
$$

CHAPTER 17

- Simple index

$$
\begin{equation*}
P=\frac{p_{t}}{p_{0}}(100) \tag{17-1}
\end{equation*}
$$

- Simple average of price relatives

$$
\begin{equation*}
P=\frac{\Sigma P_{i}}{n} \tag{17-2}
\end{equation*}
$$

- Simple aggregate index

$$
\begin{equation*}
P=\frac{\Sigma p_{t}}{\Sigma p_{0}}(100) \tag{17-3}
\end{equation*}
$$

- Laspeyres' price index

$$
\begin{equation*}
P=\frac{\Sigma p_{t} q_{0}}{\Sigma p_{0} q_{0}}(100) \tag{17-4}
\end{equation*}
$$

- Paasche's price index

$$
\begin{equation*}
P=\frac{\Sigma p_{t} q_{t}}{\Sigma p_{0} q_{t}}(100) \tag{17-5}
\end{equation*}
$$

- Fisher's ideal index
$\sqrt{(\text { Laspeyres' price index)(Paasche's price index) }}$
- Value index

$$
\begin{equation*}
V=\frac{\Sigma p_{t} q_{t}}{\Sigma p_{0} q_{0}}(100) \tag{17-7}
\end{equation*}
$$

- Real income

$$
\begin{equation*}
\text { Real income }=\frac{\text { Money income }}{\mathrm{CPI}}(100) \tag{17-8}
\end{equation*}
$$

- Using an index as a deflator

$$
\begin{equation*}
\text { Deflated sales }=\frac{\text { Actual sales }}{\text { Index }}(100) \tag{17-9}
\end{equation*}
$$

- Purchasing power

$$
\begin{equation*}
\text { Purchasing power }=\frac{\$ 1}{\mathrm{CPI}}(100) \tag{17-10}
\end{equation*}
$$

CHAPTER 18

- Linear trend

$$
\begin{equation*}
\hat{y}=a+b t \tag{18-1}
\end{equation*}
$$

- Log trend equation

$$
\begin{equation*}
\log \hat{y}=\log a+\log b(t) \tag{18-2}
\end{equation*}
$$

- Correction factor for adjusting quarterly means

$$
\begin{equation*}
\text { Correction factor }=\frac{4.00}{\text { Total of four means }} \tag{18-3}
\end{equation*}
$$

- Durbin-Watson statistic

$$
\begin{equation*}
d=\frac{\sum_{t=2}^{n}\left(e_{t}-e_{t-1}\right)^{2}}{\sum_{t=1}^{n} e_{t}^{2}} \tag{18-4}
\end{equation*}
$$

CHAPTER 19

- Grand mean

$$
\begin{equation*}
\overline{\bar{x}}=\frac{\Sigma \bar{x}}{k} \tag{19-1}
\end{equation*}
$$

- Control limits, mean

$$
\begin{equation*}
\mathrm{UCL}=\overline{\bar{x}}+A_{2} \bar{R} \quad \mathrm{LCL}=\overline{\bar{x}}-A_{2} \bar{R} \tag{19-4}
\end{equation*}
$$

- Control limits, range

$$
\begin{equation*}
\mathrm{UCL}=D_{4} \bar{R} \quad \mathrm{LCL}=D_{3} \bar{R} \tag{19-5}
\end{equation*}
$$

- Mean proportion defective

$$
\begin{equation*}
p=\frac{\text { Total number defective }}{\text { Total number of items sampled }} \tag{19-6}
\end{equation*}
$$

- Control limits, proportion

$$
\begin{equation*}
U C L \text { and } \mathrm{LCL}=p \pm 3 \sqrt{\frac{p(1-p)}{n}} \tag{19-8}
\end{equation*}
$$

- Control limits, c-bar chart

$$
\begin{equation*}
\mathrm{UCL} \text { and } \mathrm{LCL}=\bar{c} \pm 3 \sqrt{\bar{c}} \tag{19-9}
\end{equation*}
$$

CHAPTER 20

- Expected monetary value

$$
\begin{equation*}
\operatorname{EMV}\left(A_{i}\right)=\Sigma\left[P\left(S_{j}\right) \cdot V\left(A_{i}, S_{j}\right)\right] \tag{20-1}
\end{equation*}
$$

- Expected opportunity loss

$$
\begin{equation*}
\operatorname{EOL}\left(A_{i}\right)=\Sigma\left[P\left(S_{j}\right) \cdot R\left(A_{i}, S_{j}\right)\right] \tag{20-2}
\end{equation*}
$$

- Expected value of perfect information

EVPI $=$ Expected value under conditions of certainty

- Expected value of optimal decision under conditions of uncertainty

